A Schur–newton Method for the Matrix Pth Root and Its Inverse∗
نویسندگان
چکیده
Newton’s method for the inverse matrix pth root, A−1/p, has the attraction that it involves only matrix multiplication. We show that if the starting matrix is cI for c ∈ R then the iteration converges quadratically to A−1/p if the eigenvalues of A lie in a wedge-shaped convex set containing the disc { z : |z−cp| < cp }. We derive an optimal choice of c for the case where A has real, positive eigenvalues. An application is described to roots of transition matrices from Markov models, in which for certain problems the convergence condition is satisfied with c = 1. Although the basic Newton iteration is numerically unstable, a coupled version is stable and a simple modification of it provides a new coupled iteration for the matrix pth root. For general matrices we develop a hybrid algorithm that computes a Schur decomposition, takes square roots of the upper (quasi)triangular factor, and applies the coupled Newton iteration to a matrix for which fast convergence is guaranteed. The new algorithm can be used to compute either A1/p or A−1/p, and for large p that are not highly composite it is more efficient than the method of Smith based entirely on the Schur decomposition.
منابع مشابه
A STABLE COUPLED NEWTON'S ITERATION FOR THE MATRIX INVERSE $P$-TH ROOT
The computation of the inverse roots of matrices arises in evaluating non-symmetriceigenvalue problems, solving nonlinear matrix equations, computing some matrixfunctions, control theory and several other areas of applications. It is possible toapproximate the matrix inverse pth roots by exploiting a specialized version of New-ton's method, but previous researchers have mentioned that some iter...
متن کاملA Schur Algorithm for Computing Matrix pth Roots
Any nonsingular matrix has pth roots. One way to compute matrix pth roots is via a specialized version of Newton’s method, but this iteration has poor convergence and stability properties in general. A Schur algorithm for computing a matrix pth root that generalizes methods of Björck and Hammarling [Linear Algebra Appl., 52/53 (1983), pp. 127–140] and Higham [Linear Algebra Appl., 88/89 (1987),...
متن کاملA Family of Rational Iterations and Its Application to the Computation of the Matrix pth Root
Matrix fixed-point iterations zn+1 = ψ(zn) defined by a rational function ψ are considered. For these iterations a new proof is given that matrix convergence is essentially reduced to scalar convergence. It is shown that the principal Padé family of iterations for the matrix sign function and the matrix square root is a special case of a family of rational iterations due to Ernst Schröder. This...
متن کاملOn the Newton Method for the Matrix P th Root
We consider the Newton iteration for computing the principal matrix pth root, which is rarely used in the application for the bad convergence and the poor stability. We analyze the convergence conditions. In particular it is proved that the method converges for any matrix A having eigenvalues with modulus less than 1 and with positive real part. Based on these results we provide a general algor...
متن کاملGeneralized Drazin inverse of certain block matrices in Banach algebras
Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.
متن کامل